Main Page > SIMULINK for Industry > MATLAB and Simulink for Model-Based Systems Engineering (MBSE)

Engineers use Model-Based Systems Engineering (MBSE) to manage system complexity, improve communication and produce optimized systems. Successful MBSE requires the synthesis of stakeholder requirements into architecture models to create intuitive system descriptions.

MATLAB, Simulink, and System Composer together create a single environment for creating descriptive architecture models that seamlessly bridge into detailed implementation models. The connected environment ensures items across the architecture and design worlds stay in sync. Systems engineers can establish a digital thread to navigate between system requirements, architecture models, implementation models, and embedded software.

System Composer

System Composer™ enables the definition, analysis, and specification of architectures and compositions for model-based systems engineering and software design. With System Composer, you allocate requirements while refining an architecture model that can then be designed and simulated in Simulink.

System Composer lets you create or import architecture models that describe a system in terms of components and interfaces. You can also populate an architecture model from the architectural elements of Simulink designs or C/C++ code. You can create custom live views of the model to study specific design or analysis concerns. With these architecture models you can analyze requirements, capture properties via stereotyping, perform trade studies, and produce specifications and ICDs.

With MATLAB, Simulink, and System Composer, you can:

  • Capture and manage system requirements enabling impact and coverage analysis
  • Optimize system architectures by capturing architecture metadata and directly connecting to MATLAB analytics for domain-specific trade studies
  • Create simplifying customized model views to isolate the components of interest for different engineering concerns
  • Validate requirements and verify system architectures using simulation-based tests
  • Translate and refine requirements into architectures with components ready for simulation and implementation using Model-Based Design in Simulink

Develop Architecture Models and Manage System Requirements

Use System Composer to intuitively sketch hierarchical systems of architectures using a component, port, and connector modeling approach. Work at the level of abstraction that fits your needs at the time and add details as you get them. To formally define the information that is exchanged between components, you can create interfaces to verify that the data being exchanged has compatible properties such as data types, dimensions or units.

Existing design artifacts and Interface Control Document (ICD) information can be reused by importing external repositories and files using a MATLAB API. You can also extract an architecture model from existing Simulink system models.

While developing architecture models, you can directly capture, view, and manage system requirements using Simulink Requirements. System requirements can be linked to different architectural elements to establish a digital thread for requirements traceability and perform requirement coverage analysis. Linked requirements maintain a revision history enabling you to perform impact analysis and communicate important changes to downstream teams.

Perform Trade Studies and Analyze Architectures with Views

You can use stereotypes to extend your architecture models with domain-specific design data such as size, weight, power or cost. Related stereotypes can be grouped into profiles that can be applied throughout your architecture or reused in other architectures. To manage architectural complexity, you can create custom views to isolate components of interest for various stakeholders or to facilitate specific analysis activities.

Using MATLAB, you can directly perform analysis and trade studies on your architecture. Examples include:

  • Bottom-up rollup or top-down allocation (Size, Weight, Power, Cost, etc.)
  • Network or Flow Analysis (end-to-end latency, shortest path, flow of materials, etc.)
  • Custom Analysis
  • Trade Studies (identifying the most acceptable solution)

Connect to Model-Based Design in Simulink

Directly link architecture components to Simulink models to define behaviors using Model-Based Design, which is the systematic use of models throughout your development process. Following a top-down workflow, Simulink models can be automatically generated from architectural components. Conversely, you can create an architecture component directly from a Simulink component model. Linking architecture models with Simulink behavior models ensures that your architecture and implementation models stay synchronized and allows you to simulate system behavior.

System Verification

With simulation, you can explore architectures, prototype components, and create component specifications, all while understanding and refining system behaviors early in the development process. To scale this for large and complex systems, you can automate verification using test suites to validate requirements and iteratively verify system behaviors throughout the model-based system engineering process.

You can specify system level tests to check the consistency and correctness of requirements that can be used by downstream implementation teams. You can translate requirements with complex, timing-dependent signal logic into assessments with clear, defined semantics that can be used to debug designs and identify inconsistent requirements.

Explore SIMULINK Solutions for:

POWER ELECTRONICS AND DESIGN

Simulate power electronics control systems used in electric vehicles, renewable energy, and industrial automation.

EMBEDDED CODE GENERATION

Generate production code automatically from MATLAB and Simulink.

REAL-TIME SIMULATION AND TESTING

Verify algorithmic design behavior while running models at required speeds, respecting precise timing requirements.

ALGORITHM DEVELOPMENT

PHYSICAL MODELING

VERIFICATION, VALIDATION, AND TEST

ROBOTICS

PREDICTIVE MAINTENANCE

Read, Learn, Explore!

Sign up for best practices, webinar and training dates and for being always up-to-date with MATLAB ® & Simulink ® and COMSOL Multiphysics ®!

If you have any questions about private trainings, please feel free to contact us. Our customer service representatives will be happy to help you!

Get in Touch!

Just fill in your contact details and any specific comments or questions you may have, and click on the “Send” button below. Your request is immediately sent to a sales representative in your geographical area.