Main Page > SIMULINK for Industry > Power Electronics Control Design with Simulink

Power electronics engineers use MATLAB® and Simulink® to develop digital control systems for motors, power converters, and battery systems.

  • Use Simulink for simulating and generating code for supervisory and closed-loop control algorithms and reduce project time by 50% compared to traditional hand coding and testing on hardware.
  • Access thousands of ready-to-use electrical modeling components and examples for desktop simulation.
  • Use add-on toolboxes for control design, fixed-point design, signal processing, and certification.
  • Get real-time simulation support for Speedgoat and other real-time hardware platforms.
  • Generate ANSI C and processor-optimized C and HDL code for multiple leading microcontrollers, FPGAs, and SoCs.

Using Simulink for Power Electronics Control Design

Build and Tune Motor Control Algorithms

Use MATLAB and Simulink to build accurate system models from libraries of motors, power electronics, sensors, and loads. Take advantage of classic linear control design techniques such as Bode plots and root locus. You can use automated PID tuning to control the inverter power electronics that regulate voltage and frequency.

In Simulink, you can perform closed-loop simulations under normal and abnormal operating conditions to design current and speed controllers. Design fault detection and protection logic for model startup, shutdown, and error modes and design derating and protection logic to ensure safe motor operation.

Design Digital Control for Power Converters Faster with Simulink

With Simulink, you can model analog and digital components in the same simulation environment. Closed-loop simulation of the power stage and controller lets you evaluate and verify design choices such as voltage mode control and current mode control before implementing the controller.

Model power converters at different levels of fidelity: average models for system dynamics, behavioral models for switching characteristics, and detailed nonlinear switching models for parasitics and detailed design. Obtain linear models by performing small signal analysis on switching converter models using AC frequency sweeps and system identification. These models enable classical control techniques such as interactive loop shaping with Bode and root-locus plots.

Develop Battery Management System Software with Simulink

Simulate electronics circuitry and lumped parameter battery pack models. Work with models that have equivalent RC circuit battery packs models, switching power electronics, and varying loads and environmental conditions.  Use Simulink, to­ design, tune, and test supervisory, closed-loop, and fault-detection algorithms.

Tune battery model parameters using test data, and capture cell chemistry, thermal, aging, and other nonlinear characteristics. State observers are designed for state-of-charge (SoC) for cell balancing and state-of-health online estimation. Run Monte Carlo experiments on the model to exercise your control algorithms across a complete range of operating conditions and fault scenarios.

More on Motor Control, Power Conversion Control, and Battery Management Systems

Explore SIMULINK Solutions for:


Simulate power electronics control systems used in electric vehicles, renewable energy, and industrial automation.


Generate production code automatically from MATLAB and Simulink.


Verify algorithmic design behavior while running models at required speeds, respecting precise timing requirements.






Read, Learn, Explore!

Sign up for best practices, webinar and training dates and for being always up-to-date with MATLAB ® & Simulink ® and COMSOL Multiphysics ®!

If you have any questions about private trainings, please feel free to contact us. Our customer service representatives will be happy to help you!

Get in Touch!

Just fill in your contact details and any specific comments or questions you may have, and click on the “Send” button below. Your request is immediately sent to a sales representative in your geographical area.